Source code for solaris.nets.optimizers

"""Wrappers for training optimizers."""
import math
import torch
from tensorflow import keras


[docs]def get_optimizer(framework, config): """Get the optimizer specified in config for model training. Arguments --------- framework : str Name of the deep learning framework used. Current options are ``['torch', 'keras']``. config : dict The config dict generated from the YAML config file. Returns ------- An optimizer object for the specified deep learning framework. """ if config['training']['optimizer'] is None: raise ValueError('An optimizer must be specified in the config ' 'file.') if framework in ['torch', 'pytorch']: return torch_optimizers.get(config['training']['optimizer'].lower()) elif framework == 'keras': return keras_optimizers.get(config['training']['optimizer'].lower())
[docs]class TorchAdamW(torch.optim.Optimizer): """AdamW algorithm as implemented in `Torch_AdamW`_. The original Adam algorithm was proposed in `Adam: A Method for Stochastic Optimization`_. The AdamW variant was proposed in `Decoupled Weight Decay Regularization`_. Arguments: params (iterable): iterable of parameters to optimize or dicts defining parameter groups lr (float, optional): learning rate (default: 1e-3) betas (Tuple[float, float], optional): coefficients used for computing running averages of gradient and its square (default: (0.9, 0.999)) eps (float, optional): term added to the denominator to improve numerical stability (default: 1e-8) weight_decay (float, optional): weight decay coefficient (default: 1e-2) amsgrad (boolean, optional): whether to use the AMSGrad variant of this algorithm from the paper `On the Convergence of Adam and Beyond`_ (default: False) .. _Torch_AdamW: https://github.com/pytorch/pytorch/pull/3740 .. _Adam\: A Method for Stochastic Optimization: https://arxiv.org/abs/1412.6980 .. _Decoupled Weight Decay Regularization: https://arxiv.org/abs/1711.05101 .. _On the Convergence of Adam and Beyond: https://openreview.net/forum?id=ryQu7f-RZ """ def __init__(self, params, lr=1e-3, betas=(0.9, 0.999), eps=1e-8, weight_decay=1e-2, amsgrad=False): if not 0.0 <= lr: raise ValueError("Invalid learning rate: {}".format(lr)) if not 0.0 <= eps: raise ValueError("Invalid epsilon value: {}".format(eps)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, betas=betas, eps=eps, weight_decay=weight_decay, amsgrad=amsgrad) super(TorchAdamW, self).__init__(params, defaults) def __setstate__(self, state): super(TorchAdamW, self).__setstate__(state) for group in self.param_groups: group.setdefault('amsgrad', False)
[docs] def step(self, closure=None): """Performs a single optimization step. Arguments: closure (callable, optional): A closure that reevaluates the model and returns the loss. """ loss = None if closure is not None: loss = closure() for group in self.param_groups: for p in group['params']: if p.grad is None: continue # Perform stepweight decay p.data.mul_(1 - group['lr'] * group['weight_decay']) # Perform optimization step grad = p.grad.data if grad.is_sparse: raise RuntimeError('Adam does not support sparse' 'gradients, please consider SparseAdam' ' instead') amsgrad = group['amsgrad'] state = self.state[p] # State initialization if len(state) == 0: state['step'] = 0 # Exponential moving average of gradient values state['exp_avg'] = torch.zeros_like(p.data) # Exponential moving average of squared gradient values state['exp_avg_sq'] = torch.zeros_like(p.data) if amsgrad: # Maintains max of all exp. moving avg. of sq. grad. values state['max_exp_avg_sq'] = torch.zeros_like(p.data) exp_avg, exp_avg_sq = state['exp_avg'], state['exp_avg_sq'] if amsgrad: max_exp_avg_sq = state['max_exp_avg_sq'] beta1, beta2 = group['betas'] state['step'] += 1 # Decay the first and second moment running average coefficient exp_avg.mul_(beta1).add_(1 - beta1, grad) exp_avg_sq.mul_(beta2).addcmul_(1 - beta2, grad, grad) if amsgrad: # Maintains the maximum of all 2nd moment running avg. till now torch.max(max_exp_avg_sq, exp_avg_sq, out=max_exp_avg_sq) # Use the max. for normalizing running avg. of gradient denom = max_exp_avg_sq.sqrt().add_(group['eps']) else: denom = exp_avg_sq.sqrt().add_(group['eps']) bias_correction1 = 1 - beta1 ** state['step'] bias_correction2 = 1 - beta2 ** state['step'] step_size = group['lr'] * math.sqrt(bias_correction2) / bias_correction1 p.data.addcdiv_(-step_size, exp_avg, denom) return loss
torch_optimizers = { 'adadelta': torch.optim.Adadelta, 'adam': torch.optim.Adam, 'adamw': TorchAdamW, 'sparseadam': torch.optim.SparseAdam, 'adamax': torch.optim.Adamax, 'asgd': torch.optim.ASGD, 'rmsprop': torch.optim.RMSprop, 'sgd': torch.optim.SGD, } keras_optimizers = { 'adadelta': keras.optimizers.Adadelta, 'adagrad': keras.optimizers.Adagrad, 'adam': keras.optimizers.Adam, 'adamax': keras.optimizers.Adamax, 'nadam': keras.optimizers.Nadam, 'rmsprop': keras.optimizers.RMSprop, 'sgd': keras.optimizers.SGD }