Source code for solaris.nets._torch_losses

import torch
from torch.autograd import Variable
import torch.nn.functional as F
import numpy as np
from torch import nn
try:
    from itertools import ifilterfalse
except ImportError:  # py3k
    from itertools import filterfalse as ifilterfalse


[docs]class TorchDiceLoss(nn.Module): def __init__(self, weight=None, size_average=True, per_image=False, logits=False): super().__init__() self.size_average = size_average self.register_buffer('weight', weight) self.per_image = per_image self.logits = logits def forward(self, input, target): if self.logits: input = torch.sigmoid(input) return soft_dice_loss(input, target, per_image=self.per_image)
[docs]class TorchFocalLoss(nn.Module): """Implementation of Focal Loss[1]_ modified from Catalyst [2]_ . Arguments --------- gamma : :class:`int` or :class:`float` Focusing parameter. See [1]_ . alpha : :class:`int` or :class:`float` Normalization factor. See [1]_ . References ---------- .. [1] https://arxiv.org/pdf/1708.02002.pdf .. [2] https://catalyst-team.github.io/catalyst/ """ def __init__(self, gamma=2, reduce=True, logits=False): super().__init__() self.gamma = gamma self.reduce = reduce self.logits = logits # TODO refactor
[docs] def forward(self, outputs, targets): """Calculate the loss function between `outputs` and `targets`. Arguments --------- outputs : :class:`torch.Tensor` The output tensor from a model. targets : :class:`torch.Tensor` The training target. Returns ------- loss : :class:`torch.Variable` The loss value. """ if self.logits: BCE_loss = F.binary_cross_entropy_with_logits(outputs, targets, reduction='none') else: BCE_loss = F.binary_cross_entropy(outputs, targets, reduction='none') pt = torch.exp(-BCE_loss) F_loss = (1-pt)**self.gamma * BCE_loss if self.reduce: return torch.mean(F_loss) else: return F_loss
# def forward(self, outputs, targets): # """Calculate the loss function between `outputs` and `targets`. # # Arguments # --------- # outputs : :class:`torch.Tensor` # The output tensor from a model. # targets : :class:`torch.Tensor` # The training target. # # Returns # ------- # loss : :class:`torch.Variable` # The loss value. # """ # if targets.size() != outputs.size(): # raise ValueError( # f"Targets and inputs must be same size. " # f"Got ({targets.size()}) and ({outputs.size()})" # ) # # max_val = (-outputs).clamp(min=0) # log_ = ((-max_val).exp() + (-outputs - max_val).exp()).log() # loss = outputs - outputs * targets + max_val + log_ # # invprobs = F.logsigmoid(-outputs * (targets * 2.0 - 1.0)) # loss = self.alpha*(invprobs * self.gamma).exp() * loss # # return loss.sum(dim=-1).mean()
[docs]def torch_lovasz_hinge(logits, labels, per_image=False, ignore=None): """Lovasz Hinge Loss. Implementation edited from Maxim Berman's GitHub. References ---------- https://github.com/bermanmaxim/LovaszSoftmax/ https://arxiv.org/abs/1705.08790 Arguments --------- logits: :class:`torch.Variable` logits at each pixel (between -inf and +inf) labels: :class:`torch.Tensor` binary ground truth masks (0 or 1) per_image: bool, optional compute the loss per image instead of per batch. Defaults to ``False``. ignore: optional void class id. Returns ------- loss : :class:`torch.Variable` Lovasz loss value for the input logits and labels. Compatible with ``loss.backward()`` as its a :class:`torch.Variable` . """ # TODO: Restructure into a class like TorchFocalLoss for compatibility if per_image: loss = mean( lovasz_hinge_flat(*flatten_binary_scores(log.unsqueeze(0), lab.unsqueeze(0), ignore)) for log, lab in zip(logits, labels)) else: loss = lovasz_hinge_flat(*flatten_binary_scores(logits, labels, ignore)) return loss
[docs]def lovasz_hinge_flat(logits, labels): """Binary Lovasz hinge loss. Arguments --------- logits: :class:`torch.Variable` Logits at each prediction (between -inf and +inf) labels: :class:`torch.Tensor` binary ground truth labels (0 or 1) Returns ------- loss : :class:`torch.Variable` Lovasz loss value for the input logits and labels. """ if len(labels) == 0: # only void pixels, the gradients should be 0 return logits.sum() * 0. signs = 2. * labels.float() - 1. errors = (1. - logits * Variable(signs)) errors_sorted, perm = torch.sort(errors, dim=0, descending=True) perm = perm.data gt_sorted = labels[perm] grad = lovasz_grad(gt_sorted) loss = torch.dot(F.relu(errors_sorted), Variable(grad)) return loss
[docs]def flatten_binary_scores(scores, labels, ignore=None): """ Flattens predictions in the batch (binary case) Remove labels equal to 'ignore' """ scores = scores.view(-1) labels = labels.view(-1) if ignore is None: return scores, labels valid = (labels != ignore) vscores = scores[valid] vlabels = labels[valid] return vscores, vlabels
[docs]class TorchJaccardLoss(torch.nn.modules.Module): # modified from XD_XD's implementation def __init__(self): super(TorchJaccardLoss, self).__init__() def forward(self, outputs, targets): eps = 1e-15 jaccard_target = (targets == 1).float() jaccard_output = torch.sigmoid(outputs) intersection = (jaccard_output * jaccard_target).sum() union = jaccard_output.sum() + jaccard_target.sum() jaccard_score = ((intersection + eps) / (union - intersection + eps)) self._stash_jaccard = jaccard_score loss = 1. - jaccard_score return loss
[docs]class TorchStableBCELoss(torch.nn.modules.Module): def __init__(self): super(TorchStableBCELoss, self).__init__() def forward(self, input, target): neg_abs = - input.abs() loss = input.clamp(min=0) - input * target + (1 + neg_abs.exp()).log() return loss.mean()
[docs]def binary_xloss(logits, labels, ignore=None): """ Binary Cross entropy loss logits: [B, H, W] Variable, logits at each pixel (between -inf and +inf) labels: [B, H, W] Tensor, binary ground truth masks (0 or 1) ignore: void class id """ logits, labels = flatten_binary_scores(logits, labels, ignore) loss = TorchStableBCELoss()(logits, Variable(labels.float())) return loss
[docs]def lovasz_grad(gt_sorted): """ Computes gradient of the Lovasz extension w.r.t sorted errors See Alg. 1 in paper """ p = len(gt_sorted) gts = gt_sorted.sum() intersection = gts - gt_sorted.float().cumsum(0) union = gts + (1 - gt_sorted).float().cumsum(0) jaccard = 1. - intersection / union if p > 1: # cover 1 - pixel case jaccard[1:p] = jaccard[1:p] - jaccard[0:-1] return jaccard
[docs]def iou_binary(preds, labels, EMPTY=1., ignore=None, per_image=True): """ IoU for foreground class binary: 1 foreground, 0 background """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): intersection = ((label == 1) & (pred == 1)).sum() union = ((label == 1) | ((pred == 1) & (label != ignore))).sum() if not union: iou = EMPTY else: iou = float(intersection) / float(union) ious.append(iou) iou = mean(ious) # mean accross images if per_image return 100 * iou
[docs]def iou(preds, labels, C, EMPTY=1., ignore=None, per_image=False): """ Array of IoU for each (non ignored) class """ if not per_image: preds, labels = (preds,), (labels,) ious = [] for pred, label in zip(preds, labels): iou = [] for i in range(C): if i != ignore: intersection = ((label == i) & (pred == i)).sum() union = ((label == i) | ((pred == i) & (label != ignore))).sum() if not union: iou.append(EMPTY) else: iou.append(float(intersection) / float(union)) ious.append(iou) ious = [mean(iou) for iou in zip(*ious)] # mean across images if per_image return 100 * np.array(ious)
# helper functions def isnan(x): return x != x
[docs]def mean(l, ignore_nan=False, empty=0): """ nanmean compatible with generators. """ l = iter(l) if ignore_nan: l = ifilterfalse(isnan, l) try: n = 1 acc = next(l) except StopIteration: if empty == 'raise': raise ValueError('Empty mean') return empty for n, v in enumerate(l, 2): acc += v if n == 1: return acc return acc / n
def dice_round(preds, trues): preds = preds.float() return soft_dice_loss(preds, trues) def soft_dice_loss(outputs, targets, per_image=False): batch_size = outputs.size()[0] eps = 1e-5 if not per_image: batch_size = 1 dice_target = targets.contiguous().view(batch_size, -1).float() dice_output = outputs.contiguous().view(batch_size, -1) intersection = torch.sum(dice_output * dice_target, dim=1) union = torch.sum(dice_output, dim=1) + torch.sum(dice_target, dim=1) + eps loss = (1 - (2 * intersection + eps) / union).mean() return loss torch_losses = { 'l1loss': nn.L1Loss, 'l1': nn.L1Loss, 'mae': nn.L1Loss, 'mean_absolute_error': nn.L1Loss, 'smoothl1loss': nn.SmoothL1Loss, 'smoothl1': nn.SmoothL1Loss, 'mean_squared_error': nn.MSELoss, 'mse': nn.MSELoss, 'mseloss': nn.MSELoss, 'categorical_crossentropy': nn.CrossEntropyLoss, 'cce': nn.CrossEntropyLoss, 'crossentropyloss': nn.CrossEntropyLoss, 'negative_log_likelihood': nn.NLLLoss, 'nll': nn.NLLLoss, 'nllloss': nn.NLLLoss, 'poisson_negative_log_likelihood': nn.PoissonNLLLoss, 'poisson_nll': nn.PoissonNLLLoss, 'poissonnll': nn.PoissonNLLLoss, 'kullback_leibler_divergence': nn.KLDivLoss, 'kld': nn.KLDivLoss, 'kldivloss': nn.KLDivLoss, 'binary_crossentropy': nn.BCELoss, 'bce': nn.BCELoss, 'bceloss': nn.BCELoss, 'bcewithlogits': nn.BCEWithLogitsLoss, 'bcewithlogitsloss': nn.BCEWithLogitsLoss, 'hinge': nn.HingeEmbeddingLoss, 'hingeembeddingloss': nn.HingeEmbeddingLoss, 'multiclass_hinge': nn.MultiMarginLoss, 'multimarginloss': nn.MultiMarginLoss, 'softmarginloss': nn.SoftMarginLoss, 'softmargin': nn.SoftMarginLoss, 'multiclass_softmargin': nn.MultiLabelSoftMarginLoss, 'multilabelsoftmarginloss': nn.MultiLabelSoftMarginLoss, 'cosine': nn.CosineEmbeddingLoss, 'cosineloss': nn.CosineEmbeddingLoss, 'cosineembeddingloss': nn.CosineEmbeddingLoss, 'lovaszhinge': torch_lovasz_hinge, 'focalloss': TorchFocalLoss, 'focal': TorchFocalLoss, 'jaccard': TorchJaccardLoss, 'jaccardloss': TorchJaccardLoss, 'dice': TorchDiceLoss, 'diceloss': TorchDiceLoss }